Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
J Phys Chem Lett ; 14(13): 3199-3207, 2023 Apr 06.
Article in English | MEDLINE | ID: covidwho-2252233

ABSTRACT

Nonstructural accessory proteins in viruses play a key role in hijacking the basic cellular mechanisms, which is essential to promote the virus survival and evasion of the immune system. The immonuglobulin-like open reading frame 8 (ORF8) protein expressed by SARS-CoV-2 accumulates in the nucleus and may influence the regulation of the gene expression in infected cells. In this contribution, by using microsecond time-scale all-atom molecular dynamics simulations, we unravel the structural bases behind the epigenetic action of ORF8. In particular, we highlight how the protein is able to form stable aggregates with DNA through a histone tail-like motif, and how this interaction is influenced by post-translational modifications, such as acetylation and methylation, which are known epigenetic markers in histones. Our work not only clarifies the molecular mechanisms behind the perturbation of the epigenetic regulation caused by the viral infection but also offers an unusual perspective which may foster the development of original antivirals.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/metabolism , Epigenesis, Genetic , COVID-19/genetics , Histones/metabolism , Methylation
2.
Int J Mol Sci ; 24(3)2023 Jan 28.
Article in English | MEDLINE | ID: covidwho-2216341

ABSTRACT

After a sudden and first spread of the pandemic caused by the novel SARS-CoV-2 (Severe Acute Respiratory Syndrome-Coronavirus 2) wild-type strain, mutants have emerged which have been associated with increased infectivity, inducing surges in the contagions. The first of the so-called variants of concerns, was firstly isolated in the United Kingdom and later renamed Alpha variant. Afterwards, in the middle of 2021, a new variant appeared called Delta. The latter is characterized by the presence of point mutations in the Spike protein of SARS-CoV-2, especially in the Receptor Binding Domain (RBD). When in its active conformation, the RBD can interact with the human receptor Angiotensin-Converting Enzyme 2 (ACE2) to allow the entry of the virions into cells. In this contribution, by using extended all-atom molecular dynamic simulations, complemented with machine learning post-processing, we analyze the changes in the molecular interaction network induced by these different strains in comparison with the wild-type. On one hand, although relevant variations are evidenced, only limited changes in the global stability indicators and in the flexibility profiles have been observed. On the other hand, key differences were obtained by tracking hydrophilic and hydrophobic molecular interactions, concerning both positioning at the ACE2/RBD interface and formation/disruption dynamic behavior.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Humans , Angiotensin-Converting Enzyme 2/genetics , SARS-CoV-2/genetics , COVID-19/genetics , Machine Learning , Molecular Dynamics Simulation , Protein Binding , Mutation , Spike Glycoprotein, Coronavirus/genetics
3.
J Chem Inf Model ; 62(17): 4261-4269, 2022 09 12.
Article in English | MEDLINE | ID: covidwho-2000846

ABSTRACT

Viral infection relies on the hijacking of cellular machineries to enforce the reproduction of the infecting virus and its subsequent diffusion. In this context, the replication of the viral genome is a key step performed by specific enzymes, i.e., polymerases. The replication of SARS-CoV-2, the causative agent of the COVID-19 pandemics, is based on the duplication of its RNA genome, an action performed by the viral RNA-dependent RNA polymerase. In this contribution, by using highly demanding DFT/MM-MD computations coupled to 2D-umbrella sampling techniques, we have determined the chemical mechanisms leading to the inclusion of a nucleotide in the nascent viral RNA strand. These results highlight the high efficiency of the polymerase, which lowers the activation free energy to less than 10 kcal/mol. Furthermore, the SARS-CoV-2 polymerase active site is slightly different from those usually found in other similar enzymes, and in particular, it lacks the possibility to enforce a proton shuttle via a nearby histidine. Our simulations show that this absence is partially compensated by lysine whose proton assists the reaction, opening up an alternative, but highly efficient, reactive channel. Our results present the first mechanistic resolution of SARS-CoV-2 genome replication at the DFT/MM-MD level and shed light on its unusual enzymatic reactivity paving the way for the future rational design of antivirals targeting emerging RNA viruses.


Subject(s)
COVID-19 , SARS-CoV-2 , Antiviral Agents/pharmacology , Catalytic Domain , Humans , Protons , RNA, Viral/genetics , RNA-Dependent RNA Polymerase , Virus Replication
4.
Viruses ; 14(6)2022 06 13.
Article in English | MEDLINE | ID: covidwho-1911626

ABSTRACT

In the last few years, the sudden outbreak of COVID-19 caused by SARS-CoV-2 proved the crucial importance of understanding how emerging viruses work and proliferate, in order to avoid the repetition of such a dramatic sanitary situation with unprecedented social and economic costs. West Nile Virus is a mosquito-borne pathogen that can spread to humans and induce severe neurological problems. This RNA virus caused recent remarkable outbreaks, notably in Europe, highlighting the need to investigate the molecular mechanisms of its infection process in order to design and propose efficient antivirals. Here, we resort to all-atom Molecular Dynamics simulations to characterize the structure of the 5'-untranslated region of the West Nile Virus genome and its specific recognition by the human innate immune system via oligoadenylate synthetase. Our simulations allowed us to map the interaction network between the viral RNA and the host protein, which drives its specific recognition and triggers the host immune response. These results may provide fundamental knowledge that can assist further antivirals' design, including therapeutic RNA strategies.


Subject(s)
COVID-19 , West Nile Fever , West Nile virus , 5' Untranslated Regions , Animals , Antiviral Agents , Humans , Immune System , SARS-CoV-2/genetics , West Nile virus/physiology
5.
Chemical science ; 13(20):6098-6105, 2022.
Article in English | EuropePMC | ID: covidwho-1887620

ABSTRACT

The viral cycle of SARS-CoV-2 is based on a complex interplay with the cellular machinery, which is mediated by specific proteins eluding or hijacking the cellular defense mechanisms. Among the complex pathways induced by the viral infection, autophagy is particularly crucial and is strongly influenced by the action of the non-structural protein 6 (Nsp6) interacting with the endoplasmic reticulum membrane. Importantly, differently from other non-structural proteins, Nsp6 is mutated in the recently emerged Omicron variant, suggesting a possible different role of autophagy. In this contribution we explore, for the first time, the structural properties of Nsp6 thanks to long-timescale molecular dynamics simulations and machine learning analysis, identifying the interaction patterns with the lipid membrane. We also show how the mutation brought by the Omicron variant may indeed modify some of the specific interactions, and more particularly help anchor the viral protein to the lipid bilayer interface. The viral cycle of SARS-CoV-2 is based on a complex interplay with the cellular machinery, which is mediated by specific proteins eluding or hijacking the cellular defense mechanisms.

6.
Molecules ; 27(10):3256, 2022.
Article in English | ProQuest Central | ID: covidwho-1871385

ABSTRACT

DNA integrity is an important factor that assures genome stability and, more generally, the viability of cells and organisms. In the presence of DNA damage, the normal cell cycle is perturbed when cells activate their repair processes. Although efficient, the repair system is not always able to ensure complete restoration of gene integrity. In these cases, mutations not only may occur, but the accumulation of lesions can either lead to carcinogenesis or reach a threshold that induces apoptosis and programmed cell death. Among the different types of DNA lesions, strand breaks produced by ionizing radiation are the most toxic due to the inherent difficultly of repair, which may lead to genomic instability. In this article we show, by using classical molecular simulation techniques, that compared to canonical double-helical B-DNA, guanine-quadruplex (G4) arrangements show remarkable structural stability, even in the presence of two strand breaks. Since G4-DNA is recognized for its regulatory roles in cell senescence and gene expression, including oncogenes, this stability may be related to an evolutionary cellular response aimed at minimizing the effects of ionizing radiation.

7.
J Phys Chem Lett ; 13(21): 4642-4649, 2022 Jun 02.
Article in English | MEDLINE | ID: covidwho-1860273

ABSTRACT

Like all viral infections, SARS-CoV-2 acts at multiple levels, hijacking fundamental cellular functions and assuring its replication and immune system evasion. In particular, the viral 3' Open Reading Frame (ORF3a) codes for a hydrophobic protein, which embeds in the cellular membrane, where it acts as an ion viroporin and is related to strong inflammatory response. Here we report equilibrium and enhanced sampling molecular dynamic simulation of the SARS-CoV-2 ORF3a in a model lipid bilayer, showing how the protein permeabilizes the lipid membrane, via the formation of a water channel, which in turn assures ion transport. We report the free energy profile for both K+ and Cl- transfer from the cytosol to the extracellular domain. The important role of ORF3a in the viral cycle and its high conservation among coronaviruses may also make it a target of choice for future antiviral development, further justifying the elucidation of its mechanism at the atomistic level.


Subject(s)
COVID-19 , Cell Membrane , Viroporin Proteins , Cell Membrane/virology , Humans , Lipids , SARS-CoV-2
8.
Chem Sci ; 13(20): 6098-6105, 2022 May 25.
Article in English | MEDLINE | ID: covidwho-1852533

ABSTRACT

The viral cycle of SARS-CoV-2 is based on a complex interplay with the cellular machinery, which is mediated by specific proteins eluding or hijacking the cellular defense mechanisms. Among the complex pathways induced by the viral infection, autophagy is particularly crucial and is strongly influenced by the action of the non-structural protein 6 (Nsp6) interacting with the endoplasmic reticulum membrane. Importantly, differently from other non-structural proteins, Nsp6 is mutated in the recently emerged Omicron variant, suggesting a possible different role of autophagy. In this contribution we explore, for the first time, the structural properties of Nsp6 thanks to long-timescale molecular dynamics simulations and machine learning analysis, identifying the interaction patterns with the lipid membrane. We also show how the mutation brought by the Omicron variant may indeed modify some of the specific interactions, and more particularly help anchor the viral protein to the lipid bilayer interface.

9.
Chem Commun (Camb) ; 58(13): 2176-2179, 2022 Feb 10.
Article in English | MEDLINE | ID: covidwho-1642026

ABSTRACT

2'-5'-Oligoadenylate synthetase 1 (OAS1) is one of the key enzymes driving the innate immune system response to SARS-CoV-2 infection whose activity has been related to COVID-19 severity. OAS1 is a sensor of endogenous RNA that triggers the 2'-5'-oligoadenylate/RNase L pathway. Upon SARS-CoV-2 infection, OAS1 is responsible for the recognition of viral RNA and has been shown to possess a particularly high sensitivity for the 5'-untranslated (5'-UTR) RNA region, which is organized in a double-strand stem loop motif (SL1). Here we report the structure of the SL1/OAS1 complex also rationalizing the high affinity for OAS1.


Subject(s)
2',5'-Oligoadenylate Synthetase/metabolism , Immunity, Innate , RNA, Viral/metabolism , SARS-CoV-2/genetics , 5' Untranslated Regions , Base Sequence , Binding Sites , COVID-19/pathology , COVID-19/virology , Humans , Molecular Dynamics Simulation , Nucleic Acid Conformation , RNA, Viral/chemistry , RNA, Viral/genetics , SARS-CoV-2/isolation & purification
10.
J Phys Chem Lett ; 12(42): 10277-10283, 2021 Oct 28.
Article in English | MEDLINE | ID: covidwho-1469948

ABSTRACT

Guanine quadruplex (G4) structures in the viral genome have a key role in modulating viruses' biological activity. While several DNA G4 structures have been experimentally resolved, RNA G4s are definitely less explored. We report the first calculated G4 structure of the RG-1 RNA sequence of SARS-CoV-2 genome, obtained by using a multiscale approach combining quantum and classical molecular modeling and corroborated by the excellent agreement between the corresponding calculated and experimental circular dichroism spectra. We prove the stability of the RG-1 G4 arrangement as well as its interaction with G4 ligands potentially inhibiting viral protein translation.


Subject(s)
COVID-19/genetics , G-Quadruplexes , Genome, Viral , RNA, Viral/chemistry , RNA, Viral/genetics , SARS-CoV-2/genetics , COVID-19/virology , Humans , Models, Molecular , Nucleic Acid Conformation
11.
Phys Chem Chem Phys ; 23(40): 22957-22971, 2021 Oct 20.
Article in English | MEDLINE | ID: covidwho-1462045

ABSTRACT

The identification of chemical compounds able to bind specific sites of the human/viral proteins involved in the SARS-CoV-2 infection cycle is a prerequisite to design effective antiviral drugs. Here we conduct a molecular dynamics study with the aim to assess the interactions of ivermectin, an antiparasitic drug with broad-spectrum antiviral activity, with the human Angiotensin-Converting Enzyme 2 (ACE2), the viral 3CLpro and PLpro proteases, and the viral SARS Unique Domain (SUD). The drug/target interactions have been characterized in silico by describing the nature of the non-covalent interactions found and by measuring the extent of their time duration along the MD simulation. Results reveal that the ACE2 protein and the ACE2/RBD aggregates form the most persistent interactions with ivermectin, while the binding with the remaining viral proteins is more limited and unspecific.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , Antiviral Agents/metabolism , Coronavirus 3C Proteases/metabolism , Coronavirus Papain-Like Proteases/metabolism , Ivermectin/metabolism , Angiotensin-Converting Enzyme 2/chemistry , Antiviral Agents/chemistry , Binding Sites , Coronavirus 3C Proteases/chemistry , Coronavirus Papain-Like Proteases/chemistry , G-Quadruplexes , Humans , Hydrogen Bonding , Hydrophobic and Hydrophilic Interactions , Ivermectin/chemistry , Molecular Docking Simulation , Molecular Dynamics Simulation , Protein Binding , Protein Domains , RNA/genetics , RNA/metabolism , SARS-CoV-2
12.
J Phys Chem Lett ; 11(14): 5661-5667, 2020 Jul 16.
Article in English | MEDLINE | ID: covidwho-1387115

ABSTRACT

Coronaviruses may produce severe acute respiratory syndrome (SARS). As a matter of fact, a new SARS-type virus, SARS-CoV-2, is responsible for the global pandemic in 2020 with unprecedented sanitary and economic consequences for most countries. In the present contribution we study, by all-atom equilibrium and enhanced sampling molecular dynamics simulations, the interaction between the SARS Unique Domain and RNA guanine quadruplexes, a process involved in eluding the defensive response of the host thus favoring viral infection of human cells. Our results evidence two stable binding modes involving an interaction site spanning either the protein dimer interface or only one monomer. The free energy profile unequivocally points to the dimer mode as the thermodynamically favored one. The effect of these binding modes in stabilizing the protein dimer was also assessed, being related to its biological role in assisting the SARS viruses to bypass the host protective response. This work also constitutes a first step in the possible rational design of efficient therapeutic agents aiming at perturbing the interaction between SARS Unique Domain and guanine quadruplexes, hence enhancing the host defenses against the virus.


Subject(s)
Betacoronavirus/chemistry , Betacoronavirus/genetics , Coronavirus Infections/virology , G-Quadruplexes/drug effects , Pneumonia, Viral/virology , RNA, Viral/chemistry , RNA, Viral/genetics , Betacoronavirus/drug effects , COVID-19 , Dimerization , Humans , Models, Molecular , Molecular Dynamics Simulation , Pandemics , Protein Binding , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics
13.
Chem Eng J ; 412: 128682, 2021 May 15.
Article in English | MEDLINE | ID: covidwho-1062270

ABSTRACT

Recently, the potential dangers of viral infection transmission through water and air have become the focus of worldwide attention, via the spread of COVID-19 pandemic. The occurrence of large-scale outbreaks of dangerous infections caused by unknown pathogens and the isolation of new pandemic strains require the development of improved methods of viruses' inactivation. Viruses are not stable self-sustaining living organisms and are rapidly inactivated on isolated surfaces. However, water resources and air can participate in the pathogens' diffusion, stabilization, and transmission. Viruses inactivation and elimination by adsorption are relevant since they can represent an effective and low-cost method to treat fluids, and hence limit the spread of pathogen agents. This review analyzed the interaction between viruses and carbon-based, oxide-based, porous materials and biological materials (e.g., sulfated polysaccharides and cyclodextrins). It will be shown that these adsorbents can play a relevant role in the viruses removal where water and air purification mostly occurring via electrostatic interactions. However, a clear systematic vision of the correlation between the surface potential and the adsorption capacity of the different filters is still lacking and should be provided to achieve a better comprehension of the global phenomenon. The rationalization of the adsorption capacity may be achieved through a proper physico-chemical characterization of new adsorbents, including molecular modeling and simulations, also considering the adsorption of virus-like particles on their surface. As a most timely perspective, the results on this review present potential solutions to investigate coronaviruses and specifically SARS-CoV-2, responsible of the COVID-19 pandemic, whose spread can be limited by the efficient disinfection and purification of closed-spaces air and urban waters.

14.
J Proteome Res ; 19(11): 4291-4315, 2020 11 06.
Article in English | MEDLINE | ID: covidwho-960292

ABSTRACT

The emergence in late 2019 of the coronavirus SARS-CoV-2 has resulted in the breakthrough of the COVID-19 pandemic that is presently affecting a growing number of countries. The development of the pandemic has also prompted an unprecedented effort of the scientific community to understand the molecular bases of the virus infection and to propose rational drug design strategies able to alleviate the serious COVID-19 morbidity. In this context, a strong synergy between the structural biophysics and molecular modeling and simulation communities has emerged, resolving at the atomistic level the crucial protein apparatus of the virus and revealing the dynamic aspects of key viral processes. In this Review, we focus on how in silico studies have contributed to the understanding of the SARS-CoV-2 infection mechanism and the proposal of novel and original agents to inhibit the viral key functioning. This Review deals with the SARS-CoV-2 spike protein, including the mode of action that this structural protein uses to entry human cells, as well as with nonstructural viral proteins, focusing the attention on the most studied proteases and also proposing alternative mechanisms involving some of its domains, such as the SARS unique domain. We demonstrate that molecular modeling and simulation represent an effective approach to gather information on key biological processes and thus guide rational molecular design strategies.


Subject(s)
Antiviral Agents , Coronavirus Infections , Drug Design , Molecular Docking Simulation , Pandemics , Pneumonia, Viral , Spike Glycoprotein, Coronavirus , Betacoronavirus , COVID-19 , Coronavirus Infections/drug therapy , Coronavirus Infections/virology , Humans , Molecular Dynamics Simulation , Pneumonia, Viral/drug therapy , Pneumonia, Viral/virology , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism , Virus Internalization
15.
J Phys Chem Lett ; 11(21): 9272-9281, 2020 Nov 05.
Article in English | MEDLINE | ID: covidwho-882858

ABSTRACT

Since the end of 2019, the coronavirus SARS-CoV-2 has caused more than 1000000 deaths all over the world and still lacks a medical treatment despite the attention of the whole scientific community. Human angiotensin-converting enzyme 2 (ACE2) was recently recognized as the transmembrane protein that serves as the point of entry of SARS-CoV-2 into cells, thus constituting the first biomolecular event leading to COVID-19 disease. Here, by means of a state-of-the-art computational approach, we propose a rational evaluation of the molecular mechanisms behind the formation of the protein complex. Moreover, the free energy of binding between ACE2 and the active receptor binding domain of the SARS-CoV-2 spike protein is evaluated quantitatively, providing for the first time the thermodynamics of virus-receptor recognition. Furthermore, the action of different ACE2 ligands is also examined in particular in their capacity to disrupt SARS-CoV-2 recognition, also providing via a free energy profile the quantification of the ligand-induced decreased affinity. These results improve our knowledge on molecular grounds of the SARS-CoV-2 infection and allow us to suggest rationales that could be useful for the subsequent wise molecular design for the treatment of COVID-19 cases.


Subject(s)
Betacoronavirus/metabolism , Ligands , Peptidyl-Dipeptidase A/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Angiotensin-Converting Enzyme 2 , Binding Sites , COVID-19 , Coronavirus Infections/pathology , Coronavirus Infections/virology , Diosmin/chemistry , Diosmin/metabolism , Humans , Molecular Dynamics Simulation , Pandemics , Peptidyl-Dipeptidase A/chemistry , Plicamycin/chemistry , Plicamycin/metabolism , Pneumonia, Viral/pathology , Pneumonia, Viral/virology , Protein Binding , Protein Domains , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL